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Abstract— In recent years, driver-assistance systems have
emerged as one major possibility to increase comfort and –
even more important – safety in road traffic. Still, cost is one
major hindrance to the widespread use of safety systems such as
lane change or blind spot warning. To facilitate the widespread
adoption of such assistance systems, thus increasing safety for
all traffic participants, the use of cost-efficient components is
of crucial importance.
This paper investigates the usage of cost-efficient, widely used
ultrasonic sensors for blind spot warning at high velocities.
After discussing the requirements and setup of such a system
a model-based approach for the detection of moving and sta-
tionary objects is outlined. The sensor-signal is compared with
a precalculated curve data base and the correlation-coefficients
are feeded into a neural network. To revise its performance the
concept at hand is qualitatively and quantitatively evaluated in
real road traffic situations under different driving conditions.

I. INTRODUCTION

During the last decade, autonomous driving has made a
huge jump from the first DARPA challenge [1] over the last
Urban Challenge [2], [3], [4] to the latest experiments of
Google in the field of autonomous driving. Although legal
considerations and costs might be an insurmountable obstacle
for a long time, driver-assistance systems have emerged as
one major possibility to increase comfort and safety in road
traffic [5].

Besides mainly introspective systems such as ABS and
ESP recent developments [6] build more and more on
exteroreceptive sensors to detect and react on potentially
dangerous situations. To facilitate the widespread adoption of
such assistance systems the use of cost-efficient components
is of crucial importance. Ultrasonic sensors fulfill these re-
quirements on cost-efficiency. Consequently, they are widely
used in the automotive industry for periphery surveillance in
context of low velocities [7], [8], [9]. A prominent example is
the meanwhile ubiquitous parking assistant, giving feedback
on the distance to possible obstacles while the driver is
backing into a parking lot. However, the sensitivity of ultra-
sonic sensors to external disturbances such as gusts of wind
or rain and their restricted range [10], [11] was for a long
time prohibiting in context of high-speed applications, such
as the detection of cars in the blind spot of the driver. Another
hindrance is the comparably low amount of information
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Fig. 1. Approaching car in the host vehicle’s blind spot

contained in the signal. In contrast to more expensive radar,
lidar or camera systems [12], [13] that offer an acceptable
angular resolution, us-sensors often have a wide aperture.
That makes it difficult to distinguish the source or location
of an echo.
The work at hand provides an insight into the development of
a lane-change-assistent system using cost-efficient ultrasonic-
sensors for the detection of objects in the driver’s blind spot
zone at absolute velocities of up to 160 km/h. A fuzzy-
markov based approach using an inverse-geometric model
has been proposed in [14] achieving promising detection
rates. One hindrance is that this concept delivers no infor-
mation about the type and velocity of the object in the blind
spot zone. Another problem is the high number of underlying
parameters that need to be tuned individually.
To tackle these issues, the work at hand investigates a model-
based approach incorporating artifical neural networks. These
networks [15], [16] are applied to diverse tasks like image
analysis for traffic sign recognition in terms of driver-
assistance or car identification. The outlined approach com-
pares the ultrasonic signal with a precalculated curve data
base for different situations in the blind spot zone like
approaching cars, infrastructure or stationary objects. The
correlation-coefficients are feeded into an artificial neural
network and the trained network is used for the decision
process.
This paper is organized as follows. In Section II the system-
requirements and setup are discussed. Section III focuses on
the design of the algorithm incorporating curve-fitting and
neural networks. In Section IV the results are statistically



Fig. 2. Outline of the host car setup with ultrasonic sensor cones and
orange blind spot zone; the grid is composed by 1 m to 1 m tiles

evaluated by comparing them to the requirements discussed
in Section II. A little prospect on possible improvements
concludes this paper.

II. PROBLEM FORMULATION

A. Preliminaries

The goal of a blind spot surveillance system is to assist
the driver when changing lanes and avoid possibly dangerous
situations. The blind spot zone ranges from 3 m behind the
car to the side mirrors and 3 m laterally. A warning signal
shall be emitted when a car occurs within this zone during a
lane change. To ensure applicability, some preconditions are
necessary. For an optimal performance, a maximal reaction
time of 300 ms is desired and the overall detection time
should not exceed 1500 ms. A low false-alarm-rate is also
required since too many missed or unnecessary warnings
corrupt the driver’s faith in the system’s reliability. The
operating range must be designed to detect blind spot alerts
to a speed difference between the host and traffic from 0 to
30 km/h.

B. System Setup

The host vehicle is equipped with 12 ultrasonic sensors
equally positioned at its front and its back side. To detect
overtaking vehicles, the approach at hand evaluates the
measurements of two sensors on each side of the host (dark
black cones in Figure 2), namely the front and rear outer
sensor. All other sensors are not used for blind spot detection.
The aperture of the two rear sensors is approximately 75◦,
while the aperture of the front sensors is set to 45◦. This
enables sharp measurements with the front sensor in order
to detect incoming traffic from the front or outgoing traffic
from the back. In case of traffic residing within the blind
spot zone, the driver is notified by illuminating a red light
in its side mirror.
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(a) Overtaking maneuver and pass of a traffic sign

(b) Corresponding sensor signals

Fig. 3. Correlation of driving situations and sensor signals

III. REALIZATION

A. Curve-Fitting

The incoming ultrasonic measurements provide the mini-
mal distance of the sensor to the object which reflected the
ultrasonic beam in meters. Analysis of simulations as well
as real road situations show that most overtaking maneuvers
can be modelled by a parallel passing of two objects with
constant orthogonal distance. This results ideally in a para-
bolic measurement signal.
Figure 3 illustrates the signal development for a car approa-
ching from behind and the host passing a traffic sign. At
timestamp t1 the target enters the rear left sensor’s range
with measured distance r1. The approach happens during
t2, t3 with sensor measurements r2,r3. Then the target vehicle
drives parallel to the host and the input signal fades to con-
stant measured distances r4, . . . ,rn. When the target leaves
the rear sensor’s range, the signal rebounds to its maximum.
Analogously, the measurements rm and rm+1 describe a traffic
sign passed by the host with an almost vertical line at
timestamp tm fading to an ascending parabolic function at
tm+1. Obviously, driving beside infrastructure like walls or
side rails can be modelled by horizontal signal lines.
The dependance of the functions on the orthogonal distance



and the velocity is illustrated by the dotted lines in Figure
3(b). The orthogonal distance δ determines the maximal
signal amplitude in vertical direction.
The velocity affects the signal structure as follows. A higher
relative velocity νrel = νtar − νhost causes a higher instan-
taneous rate of change in the signal curve discribing the
minimal distance to the target vehicle which is denoted by
the dotted red line in Figure 3(b). Analogously, a lower host
speed νhost results in a slower rise of the distance to the
traffic sign denoted by the dotted green line in Figure 3(b).
The functions used for modelling overtaking maneuvers have
the form

fi(t) =
√

ai2t2 +ai1t +ai0 (1)

with coefficients ai j depending on the orthogonal distance δ

and the velocity νrel relative to the host speed to compare
the signal with. Let

δi ∈ {0.5,1,1.5, . . . ,4} in m, (2)
νi ∈ {1,3,5, . . . ,15} in m/s (3)

and rmax be the maximal range of the sensor, the coefficients
are calculated as follows: the sensor signal, i.e. the minimal
distance of the sensor to the object, is modelled by the
function fi(t), which shall be expressed in dependency on
δi and νi. As a start the pythagorean theorem is used to
express

fi(t)2 = δ
2
i + si(t)2 (4)

in dependency on the orthogonal distance δi, the distance
driven by the target vehicle

si(t) = smax−νit (5)

and the maximal parallel sensing distance

smax =
√

r2
max−δ 2

i . (6)

By application of the equations 5 and 6, equation 4 is
transformed to

fi(t)2 = ν
2
i t2−2νi

√
r2

max−δ 2
i t + r2

max, (7)

so the coefficients in equation 1 are

ai0 = r2
max, ai1 =−2νi

√
r2

max−δ 2
i , (8)

ai2 = ν
2
i . (9)

Analogously the parabolic signals caused by stationary
objects in the blind spot zone are modelled by functions
fi(t). In this case the host vehicle’s velocity νhost and the
relative speed νrel = νhost −0 coincide. The descending part
of the function can be neglected (see Figure 3). Infrastructure
like walls or side rails is modelled by horizontal signal
lines. Hence, the function data base contains 64 functions
depending on δi and the relative velocity νi for the detection
of approaching cars, 8 functions depending on δi and the
host speed νhost for the detection of small stationary objects
and horizontal lines simulating walls or side rails depending
on the sample mean of the measurements.
A moving window containing n sequenced measurements

of size n = 8 for short term and n = 32 for long term
analysis is considered. Let Wm = {x1, . . . ,xn} be the set
of the incoming data. For better results 2n function va-
lues Wfi = {yi1, . . . ,yi(2n)} are calculated and all subsets
{yi(1+k), . . . ,yi(n+k)} for k = 0,1, . . . ,n containing n se-
quenced elements of Wfi are compared wih Wm. For some
curves additional modifications like considering only the
relevant function values (i.e. ignoring too many subsequent
constant values) and shifting them to the center of the
window in order to improve the detection are made. The first
algorithmic step is the choice of an adequate fi satisfying

min
fi,k
{

n

∑
j=1

j 6= jmax

∣∣x j− yi( j+k)
∣∣}=: F(Wm, fi) (10)

with
jmax = max

j
{
∣∣x j− yi( j+k)

∣∣}. (11)

From the coefficients of the chosen function f the target
vehicle’s orthogonal distance to the host and relative speed
can be recalculated as follows

ν =
√

a2, δ =

√
r2

max−
a2

1
4a2

. (12)

Along with the characteristic values sample mean and cova-
riance in every sensor’s moving window Wm the calculated
distance δ and relative velocity ν form the input data of the
neural network.

B. Neural Networks

1) Design: Since the curve data base is calculated over
a lattice of orthogonal distance and relative velocity, it is
impossible to detect a unique fitting function in most cases.
As illustratd in Figure 4, there are several functions with
similar deviation values. An artificial neural network is able
to tackle this problem and refine the decision process.
In this paper a feedforward neural network, which means
that there are no cycles within, containing twenty neurons
within the hidden layer is used. The training was realized by
supervised learning using the recorded data from different
test drives as input values for the Levenberg-Marquardt-
Algorithm.
This input values are the sample mean and covariance of

all sensors in the current moving window Wm, the results
of the curve-fitting-process represented by a state variable
indicating whether an approaching car, a stationary object,
constant distance or none of those cases has been detected
and the sum of the detected states covering the last second of
measurements. Additionally, the deviation function F(Wm, f )
of the best fitting function f for every state and the host ve-
hicle’s velocity is entered. The approach at hand is illustrated
in Figure 5.
The neural network’s binary output value is 1 if a possibly
dangerous state has been detected, 0 otherwise. A warning
is emitted, if two of the last three output values are nonzero.



Fig. 4. Deviation function over the distance-velocity-lattice

Fig. 5. Neural network for the detection of overtaking cars

2) Training: There are several ways to realize this neural
network approach. One possibility is to train different net-
works for each environment namely inner city, interurban
and motorway traffic. Another idea is to design some kind
of one-size-fits-all network, whose training set contains a mix
of test drives in different environments.
The work at hand illustrates both possibilities demonstrating
three neural networks Nauto,Ncity and Nmix. The training set
of Nauto contains three motorway files with 45 km driven
distances and 88 overtaking maneuvers, Ncity was trained
using two inner city files with 10 km driven distance and
46 overtaking maneuvers and the underlying training data
of Nmix is a combination of these motorway and inner city
test drives in a ratio of 3:2 with 55 km driven distance and
134 overtaking maneuvers. In this first attempt interurban
drives have been left out of the training files since the chosen
networks are expected to cover that cases at a satisfying level.

IV. RESULTS

A. Statistical Evaluation

To revise the functionality and perfomance of the proposed
procedure, extensive testing has been conducted. The host

(a) Detection rates without host speed limits

(b) Detection rates within 25 km/h to 50 km/h (moderate speed)

(c) Detection rates within high-speed-interval (over 70 km/h)

Fig. 6. Statistical evaluation of detection rates for different host speed
intervals

vehicle was equipped with one laser sensor on each side and
four color cameras mounted on top of the car to generate a
360◦ view of the environment. In order to ensure meaningful
results, differing types of target vehicles like cars, motorbikes
or trucks and different road environments like inner city,
interurban or motorway drives had to be considered. After
more than 2000 km of test drives, the data base contains over
3000 test cases for qualitative and quantitative evaluation.
The three networks Nauto,Ncity and Nmix have been applied
to a collection of test files containing approximately 356 km
driven on motorways and addionally about 20 km and 32 km
driven in city respectively interurban traffic.
According to the requirements stated in Section II-A the



Fig. 7. False-alarm-rate for all networks and different host speed intervals

desired maxmial reaction time shall not exeed 300 ms. Hence
detection intevals of 0.3 s, 0.6 s, 1.5 sand the overall detecti-
on rate without any time limit are statistically evaluated. The
performance of the networks is compared in three settings
with different host speed intervals to illustrate their particular
strengths. Figure 6 illustrates the detection rates for the dif-
ferent speed-intervals. The first setting, illustrated in Figure
6(a), has no limitations concerning the host vehicle’s speed to
illustrate the overall performance of all networks. Figure 6(b)
shows the results in the second interval (moderate-speed-
interval) ranging from 25 km/h to 50 km/h to evaluate the
inner city efficiency. Finally the minimal host speed of the
third interval (high-speed-interval, see Figure 6(c)) is set to
70 km/h . Figure 7 shows the false-alarm-rate of all networks
relative to the total number of emitted warnings.

B. Discussion

The results demonstrated in Figure 6 and Figure 7 show
that the networks Nauto and Ncity achieve promising detection
rates for the particular driving situations they have been
trained for. As expected Ncity performs best in terms of
moderate velocities where a slightly elevated reaction time
is acceptable achieving an overall detection rate of 96.3%
and even 84% within 0.6 s. Analogously, Nauto provides
satisfying detection rates in terms of high velocities detecting
all vehicles and even 93.1% within 0.3 s. The one-size-fits-
all network Nmix provides low false-alarm-rates in the overall
and high-speed setting in exchange for a slightly elevated
reaction time but still achieving overall detection rates of at
least 96.3% in every setting.

C. Prospect

As a start the results of the neural network approach at
hand show promise. Since every network has its strengths
in particular situations, there are several possibilities for
future investigations. Although the one-size-fits-all network
provides a solid overall performance the training of diffe-
rent networks for several situations is prefered since the
specialized networks provide even better detection rates for
their particular strengths within less reaction time. Since it
is possible to detect the actual traffic situation via odometry
and curvature information, a deeper analysis of this approach

is intended.
Another aspect demanding further investigations is a neural
network trained for rain weather conditions including wet
roads and splash water. In this case, the ultrasonic sensor
signal contains a lot of noise, so it might be necessary to
consider alternative reference functions.
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